3.5. Методы экранирования и заземления3.5.1. Гальванически связанные цепи3.5.2. Экранирование сигнальных кабелей3.5.3. Гальванически развязанные цепи3.5.4. Экраны кабелей на электрических подстанциях3.5.5. Экраны кабелей для защиты от молнии3.5.6. Заземление при дифференциальных измерениях3.5.7. Интеллектуальные датчики3.5.8. Монтажные шкафы3.5.9. Распределенные системы управления3.5.10. Чувствительные измерительные цепи3.5.11. Исполнительное оборудование и приводы3.5.12. Заземление на взрывоопасных объектахТехника заземления в системах промышленной автоматизации сильно различается для гальванически связанных и гальванически развязанных цепей. Большинство методов, описанных в литературе, относится к гальванически связанным цепям, доля которых в последнее время существенно уменьшилась в связи с резким падением цен на изолирующие DC-DC преобразователи. 3.5.1. Гальванически связанные цепиМы рекомендуем избегать применения гальванически связанных цепей, а если другого варианта нет, то желательно, чтобы размер этих цепей был по возможности малым и чтобы они располагались в пределах одного шкафа. Примером гальванически связанной цепи является соединение источника и приемника стандартного сигнала 0…5 В (рис. 3.95, рис. 3.96). Чтобы пояснить, как правильно выполнить заземление, рассмотрим вариант неправильного (рис. 3.95) и правильного (рис. 3.96, монтажа. На рис. 3.95 допущены следующие ошибки:
Перечисленные ошибки приводят к тому, что напряжение на входе приемника равно сумме напряжения сигала и напряжения помехи . Для устранения этого недостатка в качестве проводника заземления можно использовать медную шину большого сечения, однако лучше выполнить заземление так, как показано на рис. 3.96, а именно:
Общим правилом ослабления связи через общий провод заземления является деление земель на аналоговую, цифровую, силовую и защитную с последующим их соединением только в одной точке. При разделении заземлений гальванически связанных цепей используется общий принцип: цепи заземления с большим уровнем помех должны выполняться отдельно от цепей с малым уровнем помех, а соединяться они должны только в одной общей точке. Точек заземления может быть несколько, если топология такой цепи не приводит к появлению участков "грязной" земли в контуре, включающем источник и приемник сигнала, а также если в цепи заземления не образуются замкнутые контуры, по которым циркулирует ток, наведенный электромагнитной помехой.
Недостатком метода разделения проводников заземления является низкая эффективность на высоких частотах, когда большую роль играет взаимная индуктивность между рядом идущими проводниками заземления, которая только заменяет гальванические связи на индуктивные, не решая проблемы в целом. Большая длина проводников приводит также к увеличению сопротивления заземления, что важно на высоких частотах. Поэтому заземление в одной точке используется на частотах до 1 МГц, свыше 10 МГц заземлять лучше в нескольких точках, в промежуточном диапазоне от 1 до 10 МГц следует использовать одноточечную схему, если наиболее длинный проводник в цепи заземления меньше 1/20 от длины волны помехи. В противном случае используется многоточечная схема [Барнс]. Заземление в одной точке часто используется в военных и космических устройствах [Барнс].
3.5.2. Экранирование сигнальных кабелей
Методы экранирования сигнального кабеля непосредственно следуют из изложенного выше материала о путях прохождения помехи. Для устранения паразитной емкостной связи и электростатических зарядов используют электростатический экран в виде проводящей трубки (чулка), охватывающей экранируемые провода, а для защиты от магнитного поля используют экран из материала с высокой магнитной проницаемостью. Рассмотрим заземление экранов при передаче сигнала по витой экранированной паре, поскольку этот случай наиболее типичен для систем промышленной автоматизации. Если частота помехи не превышает 1 МГц, то кабель нужно заземлять с одной стороны. Если его заземлить с двух сторон (рис. 3.97), то образуется замкнутый контур, который будет работать как антенна, принимая электромагнитную помеху (на рис. 3.97 путь тока помехи показан штриховой линией). Ток, протекающий по экрану, является источником индуктивных наводок на соседних проводах и проводах, находящихся внутри экрана. Хотя магнитное поле тока оплетки внутри экрана теоретически равно нулю, но вследствие технологического разброса при изготовлении кабеля, а также ненулевого сопротивления оплетки наводка на провода внутри экрана может быть значительной. Поэтому экран нужно заземлять только с одной стороны, причем со стороны источника сигнала. Если точки заземления концов кабеля разнесены на большое расстояние, между ними может существовать разность потенциалов, вызванная блуждающими токами в земле или помехами в шине заземления. Блуждающие токи наводятся электрифицированным транспортом, (трамваями, поездами метрополитена и железных дорог), сварочными агрегатами, устройствами электрохимической защиты, естественными электрическими полями, вызванными фильтрацией вод в горных породах, диффузией водных растворов и др.). Особенно большие токи возникают при ударе молнии. Блуждающие токи вызывают разность потенциалов между концами оплетки кабеля и паразитный ток, который также наводит в центральных жилах помеху вследствие взаимной индукции.
Оплетку кабеля надо заземлять со стороны источника сигнала. Если заземление сделать со стороны приемника (рис. 3.98), то ток помехи будет протекать по пути, показанному на рис. 3.98 штриховой линией, т.е. через емкость между жилами кабеля, создавая на ней и, следовательно, между дифференциальными входами, напряжение помехи. Поэтому заземлять оплетку надо со стороны источника сигнала (рис. 3.99). В этом случае путь для прохождения тока помехи отсутствует. Обратите внимание, что на этих схемах изображен дифференциальный приемник сигнала, т.е. оба его входа имеют бесконечно большое сопротивление относительно земли. Если источник сигнала не заземлен (например, термопара), то заземлять экран можно с любой стороны, т.к. в этом случае замкнутый контур для тока помехи не образуется. На частотах более 1 МГц увеличивается индуктивное сопротивление экрана и токи емкостной наводки создают на нем большое падение напряжения, которое может передаваться на внутренние жилы через емкость между оплеткой и жилами. Кроме того, при длине кабеля, сравнимом с длиной волны помехи (длина волны помехи при частоте 1 МГц равна 300 м, на частоте 10 МГц - 30 м) возрастает сопротивление оплетки (см. раздел Модель «земли» ), что резко повышает напряжение помехи на оплетке. Поэтому на высоких частотах оплетку кабеля надо заземлять не только с обеих сторон, но и в нескольких точках между ними (рис. 3.100). Эти точки выбирают на расстоянии 1/10 длины волны помехи одна от другой. При этом по оплетке кабеля будет протекать часть тока , передающего помеху в центральную жилу через взаимную индуктивность. Емкостной ток также будет протекать по пути, показанному на рис. 3.98, однако высокочастотная компонента помехи будет ослаблена. Выбор количества точек заземления кабеля зависит от разницы напряжений помехи на концах экрана, частоты помехи, требований к защите от ударов молнии или от величины токов, протекающих через экран в случае его заземления. В качестве промежуточного варианта можно использовать второе заземление экрана через емкость (рис. 3.99). При этом по высокой частоте экран получается заземленным с двух сторон, по низкой частоте - с одной. Это имеет смысл в том случае, когда частота помехи превышает 1 МГц, а длина кабеля в 10…20 раз меньше длины волны помехи, т.е. когда еще не нужно выполнять заземление в нескольких промежуточных точках. Величину емкости можно рассчитать по формуле , где - верхняя частота границы спектра помехи, - емкостное сопротивление заземляющего конденсатора (доли Ома). Например, на частоте 1 МГц конденсатор емкостью 0,1 мкФ имеет сопротивление 1,6 Ом. Конденсатор должен быть высокочастотным, с малой собственной индуктивностью.
Для качественного экранирования в широком спектре частот используют двойной экран (рис. 3.101) [Zipse]. Внутренний экран заземляют с одной стороны, со стороны источника сигнала, чтобы исключить прохождение емкостной помехи по механизму, показанному на рис. 3.98, а внешний экран уменьшает высокочастотный наводки. Во всех случаях экран должен быть изолирован, чтобы предотвратить случайные его контакты с металлическими предметами и землей. Напомним, что частота помехи - это частота, которую могут воспринимать чувствительные входы средств автоматизации. В частности, если на входе аналогового модуля имеется фильтр, то максимальная частота помехи, которую надо учитывать при экранировании и заземлении, определяется верхней граничной частотой полосы пропускания фильтра. Поскольку даже при правильном заземлении, но длинном кабеле помеха все равно проходит через экран, то для передачи сигнала на большое расстояние или при повышенных требованиях к точности измерений сигнал лучше передавать в цифровой форме или через оптический кабель. Для этого можно использовать, например, модули аналогового ввода RealLab! серии NL с цифровым интерфейсом RS-485 или оптоволоконные преобразователи интерфейса RS-485. Нами было проведено экспериментальное сравнение различных способов подключения источника сигнала (терморезистора сопротивлением 20 КОм) через экранированную витую пару (0,5 витка на сантиметр) длиной 3,5м. Был использован инструментальный усилитель RL-4DA200 с системой сбора данных RL-40AI фирмы RealLab!. Коэффициент усиления канала усиления был равен 390, полоса пропускания 1 КГц. Вид помехи для схемы рис. 3.102-а представлен на рис. 3.103. Как следует из рис. 3.102, отказ от экранирования увеличивает величину помехи в 4 раза (рис. 3.102-б, переход к одиночному включению вместо дифференциального (рис. 3.102-в увеличивает помеху в 5 раз, а если еще и отказаться от экрана, то помеха увеличивается в 230 раз (рис. 3.102-г. На рисунках приведено среднеквадратичное значение напряжения помехи в полосе частот 0,01...5 Гц, полученное на выходе приемника сигнала.
Экран, защищающий от паразитных индуктивных связей, сделать гораздо сложнее, чем электростатический экран. Для этого нужно использовать материал с высокой магнитной проницаемостью и, как правило, гораздо большей толщины, чем толщина электростатических экранов. Для частот ниже 100 КГц можно использовать экран из стали или пермаллоя. На более высоких частотах можно также использовать алюминий и медь.
3.5.3. Гальванически развязанные цепи
Аналоговая земля может быть соединена с защитным заземлением через сопротивление (подробнее см. раздел "Виды заземлений", и "Гальваническая развязка"). 3.5.4. Экраны кабелей на электрических подстанцияхНа электрических подстанциях на оплетке (экране) сигнального кабеля автоматики, проложенного под высоковольтными проводами на уровне земли и заземленного с одной стороны, может наводиться напряжение величиной в сотни Вольт [Ke] во время коммутации тока выключателем. Поэтому с целью электробезопасности оплетку кабеля заземляют с двух сторон. Для защиты от электромагнитных полей с частотой 50 Гц экран кабеля также заземляют с обеих сторон. Это оправдано в случаях, когда известно, что электромагнитная наводка с частотой 50 Гц больше, чем наводка, вызванная протеканием выравнивающего тока через оплетку. 3.5.5. Экраны кабелей для защиты от молнииДля защиты от магнитного поля молнии сигнальные кабели систем автоматизации, проходящие по открытой местности, должны быть проложены в металлических трубах из ферромагнитного материала, например, стали. Трубы играют роль магнитного экрана [Vijayaraghavan]. Нержавеющую сталь использовать нельзя, поскольку этот материал не является ферромагнитным. Трубы прокладывают под землей, а при наземном расположении они должны быть заземлены примерно через каждые 3 метра [Zipse]. Кабель должен быть экранирован и экран заземлен. Заземление экрана должно быть произведено очень качественно с минимальным сопротивлением на землю. Внутри здания магнитное поле ослабляется в железобетонных зданиях и не ослабляется в кирпичных. Радикальным решением проблем защиты от молнии является применение оптоволоконного кабеля, который стоит уже достаточно дешево и легко подключается к интерфейсу RS-485.
3.5.6. Заземление при дифференциальных измерениях
Если источник сигнала не имеет сопротивления на землю, то при дифференциальном измерении образуется "плавающий вход" (рис. 3.105). На плавающем входе может наводиться статический заряд от атмосферного электричества (см. также раздел "Виды заземлений") или входного тока утечки операционного усилителя. Для отведения заряда и тока на землю потенциальные входы модулей аналогового ввода обычно содержат внутри себя резисторы сопротивлением от 1 МОм до 20 МОм, соединяющие аналоговые входы с землей. Однако при большом уровне помех или большом сопротивлении источника сигнала сопротивление 20 МОм может оказаться недостаточным и тогда необходимо дополнительно использовать внешние резисторы сопротивлением от десятков кОм до 1 МОм или конденсаторы с таким же сопротивлением на частоте помехи (рис. 3.105). 3.5.7. Интеллектуальные датчикиВ последнее время получили быстрое распространение и развитие так называемые интеллектуальные датчики, содержащие микроконтроллер для линеаризации характеристики преобразования датчика (см., например, "Датчики температуры, давления, влажности"). Интеллектуальные датчики выдают сигнал в цифровой или аналоговой форме [Caruso]. Вследствие того, что цифровая часть датчика совмещена с аналоговой, при неправильном заземлении выходной сигнал имеет повышенный уровень шума. Некоторые датчики, например, фирмы Honeywell, имеют ЦАП с токовым выходом и поэтому требуют подключения внешнего сопротивления нагрузки (порядка 20 кОм [Caruso]), поэтому полезный сигнал в них получается в форме напряжения, падающего на нагрузочном резисторе при протекании выходного тока датчика. Рассмотрим пример. На рис. 3.106 напряжение на нагрузке равно , т. е. зависит от тока , который включает в себя ток цифровой земли. Ток цифровой земли содержит шум и, в соответствии с вышеприведенной формулой, влияет на напряжение на нагрузке. Чтобы устранить этот эффект, цепи заземления надо выполнить так, как показано на рис. 3.107. Здесь ток цифровой земли не протекает через сопротивление и поэтому не вносит шум в напряжение сигнала на сопротивлении нагрузки.
3.5.8. Монтажные шкафыМонтаж шкафов автоматики должен учитывать всю вышеизложенную информацию. Однако заранее нельзя сказать однозначно, какие требования являются обязательными, какие - нет, поскольку набор обязательных требований зависит от требуемой точности измерений и от окружающей электромагнитной обстановки. Поэтому нижеприведенные примеры заземления разделены на "правильные" и "ошибочные" условно. При этом "правильный" пример всегда дает меньший уровень помех, чем "неправильный".
На рис. 3.109 приведен пример, в котором каждое отличие от рис. 3.108 увеличивает вероятность сбоев цифровой части и ухудшает погрешность аналоговой. На рис. 3.109 сделаны следующие "неправильные" соединения:
Перечисленные недостатки устранены на рис. 3.108. Дополнительным улучшением разводки в этом примере было бы применение отдельного проводника заземления для наиболее чувствительных аналоговых модулей ввода.
В пределах шкафа (стойки) желательно группировать аналоговые модули отдельно, цифровые - отдельно, чтобы при прокладке проводов в кабельном канале уменьшить длину участков параллельного прохождения цепей цифровой и аналоговой земли. 3.5.9. Распределенные системы управленияВ системах управления, распределенных по некоторой территории с характерными размерами в десятки и сотни метров, нельзя использовать модули ввода без гальванической развязки. Только гальваническая развязка позволяет соединять цепи, заземленные в точках с разными потенциалами. Кабели, проходящие по открытой местности, должны быть защищены от магнитных импульсов во время грозы (см. раздел "Молния и атмосферное электричество", "Экраны кабелей для защиты от молнии") и магнитных полей при коммутации мощных нагрузок (см. раздел "Экраны кабелей на электрических подстанциях"). Особое внимание надо уделить заземлению экрана кабеля (см. раздел "Экранирование сигнальных кабелей"). Радикальным решением для территориально распределенной системы управления является передача информации по оптическому волокну или радиоканалу. Неплохие результаты можно получить, отказавшись от передачи информации по аналоговым стандартам в пользу цифровых. Для этого можно использовать модули распределенной системы управления RealLab! серии NL фирмы Reallab!. Суть этого подхода заключается в том, что модуль ввода располагают возле датчика, уменьшая тем самым длину проводов с аналоговыми сигналами, а в ПЛК передается сигнал по цифровому каналу. Разновидностью этого подхода является применение датчиков со встроенными в них АЦП и цифровым интерфейсом (например, датчиков серии NL-1S). 3.5.10. Чувствительные измерительные цепиДля измерительных цепей с высокой чувствительностью в плохой электромагнитной обстановке лучшие результаты дает применение "плавающей" земли (см. раздел "Виды заземлений") совместно с батарейным питанием [Floating] и передачей информации по оптоволокну. 3.5.11. Исполнительное оборудование и приводыЦепи питания двигателей с импульсным управлением, двигателей сервоприводов, исполнительных устройств с ШИМ-управлением должны быть выполнены витой парой для уменьшения магнитного поля, а также экранированы для снижения электрической компоненты излучаемой помехи. Экран кабеля должен быть заземлен с одной стороны. Цепи подключения датчиков таких систем должны быть помещены в отдельный экран и по возможности пространственно отдалены от исполнительных устройств. Заземление в промышленных сетяхПромышленная сеть на основе интерфейса RS-485 выполняется экранированной витой парой с обязательным применением модулей гальванической развязки рис. 3.110). Для небольших расстояний (порядка 10 м) при отсутствии поблизости источников помех экран можно не использовать. При больших расстояниях (стандарт допускает длину кабеля до 1,2 км) разница потенциалов земли в удаленных друг от друга точках может достигать несколько единиц и даже десятков вольт (см. раздел "Экранирование сигнальных кабелей"). Поэтому, чтобы предотвратить протекание по экрану тока, выравнивающего эти потенциалы, экран кабеля нужно заземлять только в одной точке (безразлично, в какой). Это также предотвратит появление замкнутого контура большой площади в цепи заземления, в котором за счет электромагнитной индукции может наводится ток большой величины при ударах молнии или коммутации мощных нагрузок. Этот ток через взаимную индуктивность наводит на центральной паре проводов э. д. с., которая может вывести из строя микросхемы драйверов порта. При использовании неэкранированного кабеля на нем может наводиться большой статический заряд (несколько киловольт) за счет атмосферного электричества, который может вывести из строя элементы гальванической развязки. Для предотвращения этого эффекта изолированную часть устройства гальванической развязки следует заземлить через сопротивление, например, 0,1...1 МОм (на рис. 3.110 показано штриховой линией). Особенно сильно проявляются описанные выше эффекты в сетях Ethernet с коаксиальным кабелем, когда при заземлении в нескольких точках (или отсутствии заземления) во время грозы выходят из строя сразу несколько сетевых Ethernet-плат. В сетях Ethernet с малой пропускной способностью (10 Mбит/с) заземление экрана следует выполнять только в одной точке. В Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1 Гбит/с) заземление экрана следует выполнять в нескольких точках, пользуясь рекомендациями раздел "Экранирование сигнальных кабелей"
При прокладке кабеля на открытой местности нужно использовать все правила, описанные в разделе "Экранирование сигнальных кабелей" 3.5.12. Заземление на взрывоопасных объектахНа взрывоопасных промышленных объектах (см. раздел "Автоматизация опасных объектов") при монтаже цепей заземления многожильным проводом не допускается применение пайки для спаивания жил между собой, поскольку вследствие хладотекучести припоя возможно ослабление мест контактного давления в винтовых зажимах. Экран кабеля интерфейса RS-485 заземляется в одной точке, вне взрывоопасной зоны. В пределах взрывоопасной зоны он должен быть защищен от случайного соприкосновения с заземленными проводниками. Искробезопасные цепи не должны заземляться, если этого не требуют условия работы электрооборудования (ГОСТ Р 51330.10, раздел "Экранирование сигнальных кабелей"). Искробезопасные цепи должны быть смонтированы таким образом, чтобы наводки от внешних электромагнитных полей (например, от расположенного на крыше здания радиопередатчика, от воздушных линий электропередачи или близлежащих кабелей для передачи большой мощности) не создавали опасного напряжение или тока в искробезопасных цепях. Это может быть достигнуто экранированием или отдалением искробезопасных цепей от источника электромагнитной наводки. При прокладке в общем пучке или канале кабели с искроопасными и искробезопасными цепями должны быть разделены промежуточным слоем изоляционного материала или заземленной металлической перегородкой. Никакого разделения не требуется, если используются кабели с металлической оболочкой или экраном. Заземленные металлические конструкции не должны иметь разрывов и плохих контактов между собой, которые могут искрить во время грозы или при коммутации мощного оборудования. На взрывоопасных промышленных объектах используются преимущественно электрические распределительные сети с изолированной нейтралью, чтобы исключить возможность появления искры при коротком замыкании фазы на землю и срабатывания предохранителей защиты при повреждении изоляции. Для защиты от статического электричества используют заземление, описанное в разделе "Статическое электричество". Статическое электричество может быть причиной воспламенения взрывоопасной смеси. Например, при емкости человеческого тела 100…400 пФ и потенциале заряда 1 кВ энергия искрового разряда с тела человека будет равна 50…200 мкДж, что может быть достаточно для воспламенения взрывоопасной смеси группы IIC (60 мкДж), см. [Денисенко].
|
Располагается на площади 8900 м², оснащено самым современным технологическим оборудованием, имеет научно-исследовательское и конструкторское подразделение, использующие передовые средства автоматизации проектирования. |
|
КОНТАКТЫ
|
© НИЛ АП, ООО, 1989-2024 |
|