info@reallab.ru                                   +7 (495) 26-66-700 (многоканальный)              +7 (928) 289-24-86 (WA), +7 (961) 427-15-45 (дополнительные номера)
RealLab — Эффективная безопасностьтехнологических процессов
Российское оборудование и системы
промышленной автоматизации

 

3.2. Заземление

3.2.1. Определения

3.2.2. Цели заземления

3.2.3. Защитное заземление зданий

3.2.4. Автономное заземление

3.2.5. Заземляющие проводники

3.2.6. Модель «земли»

3.2.7. Виды заземлений

Изучение влияния помех, связанных с неправильным заземлением, требует составления правдоподобных упрощенных моделей системы, включающих источники, приемники и пути прохождения помехи. Анализ таких моделей позволяет оценить влияние помех на характеристики системы.

Термин "заземление" имеет много смысловых оттенков. Мы не будем рассматривать вопросы заземления энергетических электроустановок. Это отдельная тема, которая достаточно подробно рассмотрена в литературе по электроэнергетике [Карякин, Правила]. Ниже речь идет только о заземлении, используемом в системах автоматизации для обеспечения их стабильного функционирования, а также о заземлении с целью защиты персонала от поражения электрическим током, поскольку эти два вопроса невозможно рассматривать изолированно один от другого, не нарушая стандартов системы безопасности труда.

Большинство проблем заземления в системах автоматизации возникают вследствие необходимости защиты человека от поражения электрическим током. С землей соединена нейтраль трансформатора электрической подстанции, земля является частью генератора электростатического заряда во время грозы, а также обкладкой паразитных емкостей и проводником, в котором за счет явления электромагнитной индукции наводятся токи. Земля как проводник участвует практически в любой электрической системе и ее наличие нельзя игнорировать.

 

3.2.1. Определения

Под заземлением понимают как соединение с грунтом Земли, так и соединение с некоторым «общим проводом» электрической системы, относительно которого измеряют электрический потенциал. Например, в космическом корабле или самолете «землей» считают металлический корпус. В приемнике с батарейным питанием – систему внутренних проводников, которые являются общим проводом для всей электронной схемы. В дальнейшем мы будем использовать именно такое понятие «земли», не беря в дальнейшем это слово в кавычки, поскольку оно давно стало физическим термином. Потенциал земли в электрической системе не всегда равен нулю относительно грунта Земли. Например, в летящем самолете за счет генерации электростатического заряда потенциал земли (корпуса) самолета может составлять сотни и тысячи вольт относительно поверхности Земли.

Уменьшенным вариантом земли космического корабля является «плавающая земля» - не соединенная с грунтом Земли система проводников, относительно которой отсчитывается потенциал в отдельной части электрической системы. Например, в модуле аналогового ввода с гальванической развязкой внутренняя аналоговая земля модуля может не соединяться с грунтом Земли, т.е. быть "плавающей".

Под защитным заземлением понимают электрическое соединение проводящих частей оборудования с грунтом Земли через заземляющее устройство с целью защиты персонала от поражения электрическим током.

Заземляющим устройством называют совокупность заземлителя (т.е. проводника, соприкасающегося с землей) и заземляющих проводников [Правила].

Общим проводом (проводником) называют проводник в системе автоматики, относительно которого отсчитываются потенциалы. Обычно он является общим для источника питания и подключенных к нему электронных устройств. Примером может быть провод, общий для всех 8 входов 8-канального модуля аналогового ввода с одиночными (не дифференциальными) входами. Общий провод во многих случаях является синонимом земли, но он может быть вообще не соединен с грунтом Земли.

Сигнальным заземлением называют соединение с землей общего провода цепей передачи сигнала.

Сигнальная земля делится на цифровую землю и аналоговую. Сигнальную аналоговую землю иногда делят на землю аналоговых входов и землю аналоговых выходов.

Силовой землей будем называть общий провод в системе, соединенный с защитной землей, по которому протекает большой ток (большой по сравнению с током для передачи сигнала).

В основе такого деления земель лежит различный уровень чувствительности к помехам аналоговых и цифровых цепей, а также сигнальных и мощных (силовых) цепей, и, как правило, гальваническая развязка между указанными землями в системах промышленной автоматизации.

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземлителю непосредственно или через малое сопротивление (например, через трансформатор тока).

Нулевым проводом называется провод сети, соединенный с глухозаземленной нейтралью.

Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству.

Занулением называют соединение оборудования с глухозаземленной нейтралью трансформатора или генератора в сетях трехфазного тока или с глухозаземленным выводом источника однофазного тока [Правила].

Ниже мы будем также использовать термин "кондуктивный" – от слова "conductor" (проводник) – связанный с проводимостью материала, например, кондуктивная помеха наводится через проводник, соединяющий две цепи.

 

3.2.2. Цели заземления

Защитное заземление служит исключительно для защиты людей от поражения электрическим током. Наличие защитного заземления часто приводит к увеличению уровня помех в системах автоматики, однако оно является необходимым, поэтому исполнение сигнальной и силовой земли должно базироваться на предположении, что защитное заземление имеется и оно выполнено в соответствии с ПУЭ [Правила]. Защитное заземление можно не применять только для оборудования с напряжением питания до 42 В переменного или 110 В постоянного тока, за исключением взрывоопасных зон. Подробнее см. раздел "Заземление на взрывоопасных объектах" и ПУЭ, гл.1.7.

Правила заземления для уменьшения помех от сети 50 Гц в системах автоматизации зависят от того, используется ли сеть с глухозаземленной или с изолированной нейтралью. Заземление нейтрали трансформатора на подстанции выполняется с целью ограничения напряжения, которое может появиться на проводах сети 220/380 В относительно Земли при прямом ударе молнии или в результате случайного соприкосновения с линиями более высокого напряжения, или в результате пробоя изоляции токоведущих частей распределительной сети.

Электрические сети с изолированной нейтралью используются для избегания перерывов питания потребителя при единственном повреждении изоляции, поскольку при пробое изоляции на землю в сетях с глухозаземленной нейтралью срабатывает защита и питание сети прекращается. Кроме того, в цепях с изолированной нейтралью при пробое изоляции на землю отсутствует искра, которая неизбежна в сетях с глухозаземленной нейтралью. Это свойство очень важно при питании оборудования во взрывоопасной зоне. В США в нефтегазовой и химической промышленности используется также заземление нейтрали через сопротивление, ограничивающее ток на землю в случае короткого замыкания [Nelson].

Сигнальная земля служит для упрощения электрической схемы и удешевления систем и устройств автоматики. При использовании сигнальной земли в качестве общего провода для разных цепей появляется возможность применения одного общего источника питания для всей электрической цепи вместо нескольких «плавающих» источников. Электрические цепи без общего провода (без земли) всегда можно преобразовать в цепи с общим проводом и наоборот по правилам, изложенным в работе [Денисенко].

В зависимости от целей применения сигнальные земли можно разделить на базовые и экранные. Базовая земля используется для отсчета и передачи сигнала в электронной цепи, а экранная земля используется для заземления экранов.

Базовая сигнальная земля используется также для «привязки» потенциала изолированной части электрической цепи к земле системы автоматики. Например, если входные каскады модуля ввода сигналов термопар имеют гальваническую развязку от земли системы, то потенциал входов может быть как угодно большим вследствие заряда паразитной емкости между землей и входными каскадами. Во время грозы этот потенциал может составить тысячи вольт (см. раздел "Молния и атмосферное электричество"), что приведет к пробою гальванической изоляции модуля. Для предотвращения этого явления аналоговая земля входных каскадов (обозначается обычно AGND) должна быть соединена с землей системы, как это будет описано ниже.

Экранная земля используется для заземления экранов кабелей, экранирующих перегородок, корпусов приборов и снятия статических зарядов с трущихся частей транспортерных лент, ремней электроприводов и т. п.

 

3.2.3. Защитное заземление зданий

В качестве защитных заземляющих проводников используют естественные и искусственные заземлители [Правила]. К естественным заземлителям относятся, например, стальные и железобетонные каркасы производственных зданий; металлические конструкции производственного назначения; стальные трубы электропроводок; алюминиевые оболочки кабелей; металлические стационарные открыто проложенные трубопроводы всех назначений, за исключением трубопроводов горючих и взрывоопасных веществ, канализации и центрального отопления  [Правила, п.1.7.73]. Если их проводимость удовлетворяет требованиям к заземлению, то дополнительные проводники для заземления не используются. Возможность использования железобетонного фундамента здания объясняется тем, что удельное сопротивление влажного бетона примерно равно удельному сопротивлению земли (150…300 ) [Карякин].

Искусственные (специально изготовленные) заземлители используют, когда сопротивление заземления превышает установленные ПУЭ нормы. Конструктивно они представляют собой трубы, уголки, пруты, помещенные в землю вертикально на глубину 3 м или горизонтально на глубину не менее 50…70 см. Для улучшения равномерности распределения потенциала земли (для уменьшения "напряжения шага") используют несколько заземлителей, соединяя их стальной полосой. На электрических подстанциях используют сетку заземлителей. При соединении заземлителей между собой не рекомендуется образовывать замкнутый контур большой площади [Zipse], поскольку он является "антенной", в которой может циркулировать большой ток во время разрядов молнии. Лучшие результаты получаются при соединении заземлителей в форме сетки, когда площадь каждого контура сетки много меньше общей площади, охватываемой заземлителями. Различные конструкции заземляющих устройств приведены в книге [Карякин].

Несмотря на рекомендации многих авторов избегать контуров при выполнении разводки шин заземления по зданию [171], на практике, например, при использовании естественных заземлителей, избежать этого часто не удается. Железобетонные конструкции промышленных зданий содержат металлические арматурные прутья, которые соединяются между собой сваркой. Таким образом, система заземления здания представляет собой металлическую клетку, нижняя часть которой электрически соединена с грунтом. Монтажная организация обеспечивает надежный контакт между собой всех металлических конструкций здания и оформляет акты на скрытые работы. Заземляющий контакт для подключения оборудования при этом представляет собой болт заземления, приваренный к металлической закладной конструкции элемента колонны или фундамента здания [Карякин].

При монтаже систем заземления нужно избегать зазоров в контурах, на которых может наводиться э.д.с. магнитным полем молнии, чтобы исключить появление искры и возможного возгорания горючих веществ в здании.

В зданиях для размещения оборудования систем связи систему проводников заземления выполняют в виде сетки [Соколов]. Сетка выполняет одновременно функции заземления и электромагнитного экрана здания. На электростанциях в помещении с промышленной автоматикой стены и потолок экранируют стальными плитами [Liang], окна и отверстия для кондиционирования закрывают медной сеткой, пол выполняют из электропроводного пластика.

Необходимо обратить внимание на качество контактов в цепи заземления. В статье [Burleson] приводится пример, когда плохо затянутый болт в цепи заземления приводил к сбоям системы автоматики, причину которого искали несколько лет. При конструировании заземления нельзя использовать контакты разнородных металлов, чтобы не образовывались гальванические пары, являющиеся местами быстрой коррозии. Медь со сталью можно соединять только через буферные металлы: нержавеющую сталь или бронзу, без оцинкованного крепежа.

При монтаже системы автоматики в уже построенном здании система заземляющих проводников, как правило, уже смонтирована и шина защитного заземления разведена по зданию.

 

3.2.4. Автономное заземление

К системе защитного заземления промышленного объекта могут быть подключены силовые установки, которые поставляют большой ток помехи в провод заземления. Поэтому для точных измерений может потребоваться отдельная земля, выполненная по технологии искусственного заземления в грунт. Такое заземление соединено с общим заземлением здания только в одной точке для целей выравнивания потенциала между разными землями, что важно при ударе молнии [Durham].

Второй вариант автономной, "чистой" земли можно получить с помощью изолированного провода, который нигде не соединяется с металлическими конструкциями здания, но соединяется с основной клеммой заземления у ввода нейтрали питающего фидера в здание. Шину такого заземления делают из медной шины с поперечным сечением не менее 13 кв. мм.

 

3.2.5. Заземляющие проводники

Проводники, соединяющие оборудование с заземлителем, должны быть по возможности короткими, чтобы снизить их активное и индуктивное сопротивление. Для эффективного заземления на частотах более 1 МГц проводник должен быть короче 1/20 [Reducing], а лучше 1/50 [Kosc] длины волны самой высокочастотной гармоники в спектре помехи (см. также раздел "Модель "земли"). При частоте помехи 10 МГц (длина волны 30 м) и длине проводника 7,5 м (1/4 от длины волны) модуль его полного сопротивления на частоте помехи будет равен бесконечности, т.е. такой проводник можно использовать в качестве изолятора на частоте помехи, но не для заземления.

При наличии фильтров в системе автоматизации за максимальную частоту влияющей помехи можно принимать верхнюю граничную частоту фильтра.

Чтобы снизить падение напряжения на заземлителе, надо уменьшать его длину. Индуктивное сопротивление провода заземления на частоте помехи равно , где в типовых случаях равно примерно 0,8 мкГн/м (погонная индуктивность провода), - длина провода.

Если провода заземления располагаются близко один от другого, то между ними передается помеха через взаимную индуктивность. Это особенно существенно на высоких частотах.

Заземляющий проводник не должен касаться других металлических предметов, поскольку такие случайные нестабильные контакты могут быть источником дополнительных помех.

 

3.2.6. Модель «земли»

На основании вышеизложенного можно предложить электрическую модель системы заземления, показанную на рис. 3.71 [Денисенко , Денисенко]. При составлении модели предполагалось, что система заземления состоит из заземляющих электродов, соединенных между собой сплошной шиной заземления, к которой приварена пластина (клемма) заземления. К клемме заземления подсоединяются, к примеру, две шины (два проводника) заземления, к которым в разных местах подключается заземляемое оборудование.

 


Рис. 3.71. Электрическая модель системы заземления

 

Если шины заземления или заземляющие проводники проходят близко один от другого, то между ними существует магнитная связь с коэффициентом взаимной индукции (рис. 3.71). Каждый участок проводника (шины) системы заземления имеет индуктивность , сопротивление и в нем наводится э.д.с. помехи путем электромагнитной индукции. На разных участках шины заземления к ней подсоединено оборудование автоматики, которое поставляет в шину заземления ток помехи , вызванный описанными в разделе "Источники помех" причинами, и ток цепей питания, возвращающийся к источнику питания по шине земли. На рис. 3.71 изображено также сопротивление между заземляющими электродами и ток помехи , протекающий по земле, например, при ударах молнии или при к.з. на землю мощного оборудования.

Если шина сигнального заземления используется одновременно для питания систем автоматизации (этого нужно избегать), то необходимо учитывать ее сопротивление. Сопротивление медного провода длиной 1 м и диаметром 1 мм равно 0,022 Ом. В промышленной автоматике при расположении датчиков на большой площади, например, в элеваторе, длина заземляющего проводника может достигать 100 м и более. Для проводника длиной 100 м сопротивление составит 2,2 Ом. При количестве модулей системы автоматики, питаемых от одного источника, равном 20 и токе типовом потребления одного модуля 0,1 А падение напряжения на сопротивлении заземляющего проводника составит 4,4 В.

При частоте помехи более 1 МГц возрастает роль индуктивного сопротивления цепи заземления, а также емкостной и индуктивной связи между участками цепей заземления. Провода заземления начинают излучать электромагнитные волны и сами становятся источниками помех.

На высоких частотах проводник заземления или экран кабеля, проложенный параллельно полу или стене здания, образует совместно с заземленными металлическими конструкциями здания длинную линию с волновым сопротивление порядка 500...1000 Ом, короткозамкнутую на конце. Поэтому сопротивление проводника для высокочастотных помех определяется не только его индуктивностью, но и явлениями, связанными с интерференцией между падающей волной помехи и отраженной от заземленного конца провода. Зависимость модуля полного комплексного сопротивления между точкой подключения проводника к заземляемому оборудованию и ближайшей точкой железобетонной конструкции здания можно приблизительно описать формулой для двухпроводной воздушной линии передачи: , где - волновое сопротивление, - длина проводника заземления; - длина волны помехи; , - скорость света в вакууме (300 тыс. км/с); - частота помехи. График, построенный по приведенной формуле для типового проводника заземления (экрана) диаметром 3 мм при расстоянии до ближайшего прута железобетонной арматуры здания 50 см (при этом волновое сопротивление составляет 630 Ом), приведен на рис. 3.72. Отметим, что когда длина проводника приближается к 1/4 длины волны помехи, его сопротивление резко возрастает.

 


Рис. 3.72. Зависимость модуля полного комплексного сопротивления заземляющего проводника от длины провода

 

Таким образом, шина земли является в общем случае "грязной землей", источником помех, имеет активное и индуктивное сопротивление. Она является эквипотенциальной только с точки зрения защиты от поражения электрическим током, но не с точки зрения передачи сигнала. Поэтому если в контур, включающий источник и приемник сигнала, входит участок "грязной земли", то напряжение помехи будет складываться с напряжением источника сигнала и прикладываться ко входу приемника.

 

3.2.7. Виды заземлений

Одним из путей ослабления вредного влияния цепей заземления на системы автоматизации является раздельное выполнение заземлений для устройств, имеющих разную чувствительность к помехам или являющихся источниками помех разной мощности. Раздельное исполнение заземляющих проводников позволяет выполнить их соединение с защитной землей в одной точке. При этом заземляющие проводники разных систем земель представляют собой лучи звезды, центром которой является контакт к шине защитного заземления здания. Благодаря такой топологии помехи "грязной" земли не протекают по проводникам "чистой" земли. Таким образом, несмотря на то, что системы заземления разделены и имеют разные названия, в конечном счете все они соединены с Землей через систему защитного заземления. Исключение составляет только "плавающая" земля (см. ниже).

Силовое заземление

В системах автоматики могут использоваться электромагнитные реле, микромощные серводвигатели, электромагнитные клапаны и другие устройства, ток потребления которых существенно превышает ток потребления модулей ввода-вывода и контроллеров. Цепи питания таких устройств выполняют отдельной парой свитых проводов (для уменьшения излучаемых помех), один из которых соединяется с шиной защитного заземления. Общий провод системы (обычно провод, подключенный к отрицательному выводу источника питания) является силовой землей.

Аналоговая и цифровая земля

Системы промышленной автоматики являются аналого-цифровыми. Поэтому одним из источников погрешностей аналоговой части является помеха, создаваемая цифровой частью системы. Для исключения прохождения помех через цепи заземления цифровую и аналоговую землю выполняют в виде несвязанных проводников, соединенных вместе только в одной общей точке. Для этого модули ввода-вывода и промышленные контроллеры имеют отдельные выводы аналоговой земли (AGND - "Analog GrouND") и цифровой (DGND - "Digital GrouND").

«Плавающая» земля

"Плавающая" земля образуется в случае, когда общий провод небольшой части системы электрически не соединяется с шиной защитного заземления (т.е. с Землей). Типовыми примерами таких систем являются батарейные измерительные приборы, системы автоматики автомобиля, самолета или космического корабля. "Плавающая" земля может быть получена и с помощью DC-DC или AC-DC преобразователей, если вывод вторичного источника питания в них не заземлен. Такое решение позволяет полностью исключить кондуктивные наводки через общий провод заземления. Кроме того, допустимое напряжение синфазного сигнала может достигать 300 Вольт и более; практически 100%-ным становится подавление синфазного сигнала, снижается влияние емкостных помех. Однако на высоких частотах токи через емкость на землю существенно снижают последние два достоинства.

 


Рис. 3.73. Пример "плавающей" земли AGND

 

Если "плавающая" земля получена с помощью устройств гальванической развязки на оптронах и DC-DC преобразователях, то надо принять особые меры для предотвращения накопления заряда в емкости между Землей и "плавающей" землей, которое может привести к пробою оптрона (см. раздел "Гальваническая развязка", "Статическое электричество").

Пример образования "плавающей" земли показан на рис. 3.73. Вывод AGND модуля ввода сигналов термопар не соединен с землей. Аналоговая часть модуля имеет эквивалентную емкость на землю , которая включает в себя емкость входных цепей на землю, емкость проводников печатной платы на землю, проходную емкость DC-DC преобразователя и оптронов гальванической развязки. Величина этой емкости может составлять около 100 пФ и более. Поскольку воздух и другие диэлектрики, с которыми контактирует емкость , имеют не бесконечное электрическое сопротивление, то емкость может медленно, в течение минут или часов, зарядиться током утечки (рис. 3.73) до потенциала электризованных тел, высоковольтных источников питания или потенциала, связанного с атмосферным электричеством (см. раздел "Молния и атмосферное электричество", "Статическое электричество"). Потенциал на "плавающей" земле может превысить напряжение пробоя изоляции оптронов и вывести систему из строя.

В качестве защитных мер при использовании "плавающей" земли можно рекомендовать соединение "плавающей" части с землей через сопротивление величиной от десятков килоом до единиц мегаом. Вторым способом является применение батарейного питания одновременно с передачей информации через оптический кабель.

"Плавающая" земля чаще используется в технике измерений малых сигналов и реже - в промышленной автоматизации.

 

 

3.1. источники помех

3.3. проводные каналы передачи сигналов

 

Располагается на площади 8900 м², оснащено самым современным технологическим оборудованием, имеет научно-исследовательское и конструкторское подразделение, использующие передовые средства автоматизации проектирования.

 



   
     
               
 
КОНТАКТЫ

Телефон:


Режим работы:
Адрес:

Почта:

+7 (495) 26-66-700
+7 (928) 289-24-86, 
+7 (961) 427-15-45
с 8:00 до 16:30
Биржевой Спуск, 8
г. Таганрог, Россия
info@reallab.ru

© НИЛ АП, ООО, 1989-2024

Дизайн-студия cCube. Разработка и поддержка сайтов
Разработка и поддержка
cCube.ru