

Тел.: (495) 26-66-700, info@reallab.ru, www.reallab.ru

Коммуникационное оборудование

Универсальный адресуемый преобразователь интерфейсов 1-Wire — RS485

серии

RealLab!

Модель NL-1W485A

- интерфейс RS-485
- протокол DCON
- протокол Modbus RTU

Техническое описание и руководство по эксплуатации

© НИЛ АП, 2023

Версия от 24 апреля 2024 г.

Одной проблемой стало меньше!

НИЛ АП, ООО • пер. Биржевой спуск, 8 • г. Таганрог • 347900

Тел. (495) 26-66-700 • e-mail: info@reallab.ru • http://www.reallab.ru

Общее описание

Универсальный адресуемый преобразователь (конвертер) интерфейсов NL-1W485A, далее преобразователь (рисунок 1) предназначен для организации обмена информацией между устройствами, имеющими интерфейсы 1-Wire и RS-485. Формат и направление передаваемых данных не имеет значения.

Преобразователь является устройством широкого применения и может быть использован во всех случаях, когда необходимо соединить устройства, имеющие интерфейс 1-Wire и RS-485 с протоколами DCON или Modbus RTU.

Преобразователь обеспечивает устройства, подключенные к шине 1-Wire питающим напряжением 5 В.

Габаритные размеры (Д x В x Ш) не более 75x80x20 мм.

Код в соответствии с Общероссийским классификатором продукции по видам экономической деятельности ОК 034-2014 (КПЕС 2008): 26.30.30.

Наработка на отказ – не менее 100 000 ч. Средний срок службы – не менее 20 лет.

Рисунок 1 Внешний вид преобразователя.

Область применения

- метеорология;
- теплицы;
- системы АСУ ТП.

Основные свойства

- напряжение питания преобразователя интерфейсов 10...30 В;
- крепление на DIN-рейку;
- обеспечивает устройства, подключенные к шине 1Wire питающим напряжением +5 B;

- максимальное количество подключаемых устройств к шине 1-Wire – 48;
- Максимальная длина линии 1-Wire 30 м;
- Максимальная длина транслируемой посылки по шине 1-Wire - 32 байта;
- Протоколы обмена со стороны интерфейса RS-485 — DCON, Modbus RTU.

Комплект поставки

- Преобразователь интерфейсов NL-1W485A;
- Техническое описание и руководство по эксплуатации.

Структура изделия

Преобразователь состоит из микросхемы драйвера интерфейса RS-485, стабилизатора напряжения и микроконтроллера.

Подключается преобразователь к сопрягаемым интерфейсам в соответствии с маркировкой выводов, приведенной в табл. 1.

Табл. 1 Маркировка выводов

Назначение вывода	Обозначение клеммы
Питание 1030 В	+ Vs
Общий питания	GND
RS-485 Data+	D+
RS-485 Data-	D-
Питание устройств 1Wire	+5V
Данные устройств 1Wire	Q
Общий устройств 1Wire	GND
Вывод инициализации	INIT

Применение режима INIT

Этот режим используется для изменения скорости обмена или бита контрольной суммы при работе с протоколом DCON, а также в случае, когда пользователь забыл ранее установленные параметры конфигурации преобразователя. В режиме INIT обмен всегда осуществляется по протоколу DCON, устанавливается адрес 00, скорость обмена 9600 бит/с, контрольная сумма выключена. Для перехода в режим INIT необходимо выполнить следующие действия:

- выключить питание преобразователя;
- соединить вывод INIT с выводом GND:
- включить питание преобразователя.

Далее можно отправить команду чтения конфигурации преобразователя \$002 или установить новые параметры конфигурации. Установленные в режиме INIT параметры вступят в силу после отключения вывода INIT и перезагрузки преобразователя.

НИЛ АП ______ RealLab!

Универсальный адресуемый преобразователь интерфейсов 1Wire – RS-485

Протоколы обмена

Преобразователь может конвертировать данные с шины 1Wire в протоколы DCON и Modbus RTU. Выбор протокола осуществляется специальной командой переключения протоколов.

Подготовка к работе

Осуществите подключение преобразователя к источнику питания и сопрягаемым интерфейсам согласно табл. 1 и маркировке, нанесенной на корпусе преобразователя.

При первичном запуске преобразователя необходимо провести его инициализацию (выбор протокола, установку адреса, скорости обмена и т. д.). Преобразователь поставляется с предустановленными настройками: протокол обмена DCON, адрес 01, скорость обмена 9600 бит/с, контрольная сумма отключена. При необходимости можно изменить данные настройки используя, к примеру, терминальный режим программы конфигуратора NLconfig.

Описание протокола DCON

В описании команд будут встречаться следующие обозначения:

[СНК] – двухбайтовая контрольная сумма. Контрольная сумма может отсутствовать (зависит от настроек преобразователя)

- (cr) признак окончания команды (в качестве признака используется символ возврата каретки ASCII код 0Dh). В конфигураторе NLconfig данный символ не отображается, однако при использовании стороннего программного обеспечения его необходимо учитывать.
 - ! признак успешного выполнения команды
- ? признак ошибки, данная команда не может быть выполнена. Возможно, допущена синтаксическая ошибка или указано значение, выходящее за диапазон. За данным символом всегда следует адрес ответившего преобразователя.

Применение контрольной суммы

НИЛ АП

Контрольная сумма позволяет обнаружить ошибки связи, в случае работы преобразователя в условиях сильных электромагнитных помех.

Контрольная сумма представляется двумя ASCII символами, обозначающее шестнадцатеричное число и передается непосредственно перед символом "возврат каретки" (сг). Контрольная сумма должна быть равна сумме кодовых значений всех ASCII символов, представленных в команде. Эта

сумма должна быть представлена в шестнадцатеричной системе счисления. Если сумма больше FFh, то в качестве контрольной суммы используется только младший байт. Если контрольная сумма используется, но в команде она записана ошибочно или пропущена, преобразователь игнорирует команду.

Пример:

Предположим, необходимо отправить в преобразователь команду **\$012(cr)**. Сумма ASCII кодов символов команды (символ возврата каретки не считается) равна:

"\$"+"0"+"1"+"2" = 24h+30h+31h+32h=B7h,

контрольная сумма равна B7h, т.е. перед символом (cr) в команде необходимо указать еще 2 символа "В" и "7", и команда **\$012(cr)** будет выглядеть как **\$012B7(cr)**.

Команда конфигурации преобразователя:

Команда: %AANNTTCCFF[CHK](cr)

где: % - символ идентификации команды

АА - адрес преобразователя

NN — новый адрес преобразователя

ТТ — зарезервирован

СС - скорость обмена

FF – формат посылки

Код скорости обмена может принимать значение от 03 до 0A, что будет соответствовать скоростям 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с.

В коде формата посылки используется только 6 разряд, поэтому код формата посылки может принимать только два значения:

00 — контрольная сумма выключена

40 — контрольная сумма включена

Остальные разряды зарезервированы, поэтому иные значения кода формата посылки не должны использоваться.

Ответ: !AA[CHR](cr)

где:

АА - адрес преобразователя.

Команда чтения конфигурации преобразователя

\$AA2[CHK](cr)

где: \$ - символ идентификации команды

АА - адрес преобразователя

2 — символ идентификации команды

RealLab!

пер. Биржевой спуск, 8, г. Таганрог, 347900, т. (495) 26-66-700, e-mail: info@reallab.ru, http://www.reallab.ru

Универсальный адресуемый преобразователь интерфейсов 1Wire – RS-485

Ответ: !AATTCCFF[CHK](cr)

где: АА – адрес преобразователя

ТТ – зарезервирован

СС - скорость обмена

FF – формат посылки

В коде формата посылки используется только 6 разряд, поэтому код формата посылки может принимать только два значения:

00 — контрольная сумма выключена

40 — контрольная сумма включена

Остальные разряды зарезервированы, поэтому считываются как ноль.

Команда чтения настройки паритета и стоп битов

^AAC[CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

С — символ идентификации команды

Ответ: !AAPS[CHK](cr)

где: АА - адрес преобразователя

P – паритет, может принимать один из перечисленных ASCII кодов:

- N нет контроля паритета;
- E контроль четности;
- О контроль не четности;

S – количество стоп битов, может принимать значения 1 или 2

Команда записи настройки паритета и стоп битов

^AACPS[CHK](cr)

где: ^ - символ идентификации команды

- АА адрес преобразователя
- С символ идентификации команды
- **P** паритет, может принимать один из перечисленных ASCII кодов:
 - N нет контроля паритета;
 - E контроль четности;
 - О контроль не четности;

 ${\bf S}$ – количество стоп битов, может принимать значения 1 или 2

Ответ: !AA[CHK](cr)

где: АА – адрес преобразователя

Команда чтения версии программы \$AAF[CHK](cr)

где: \$ - символ идентификации команды

АА - адрес преобразователя

F — символ идентификации команды

OTBET: !AADD.MM.YY[CHK](cr)

где: АА – адрес преобразователя

Далее следует строка, содержащая дату последней модификации программы в формате ДД.ММ.ГГ записанную ASCII кодами. День, месяц и год разделены символами точек.

DD – день

ММ - месяц

ҮҮ – год.

Команда чтения имени преобразователя ^AAM[CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

М — символ идентификации команды

Ответ: !AA[Data][CHK](cr)

где: АА – адрес преобразователя

[Data] – Строка ASCII кодов содержащая имя преобразователя. Длина имени может составлять до 8 символов.

Команда записи имени преобразователя ^AAO[Data][CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

О — символ идентификации команды

[Data] - Строка ASCII кодов содержащая имя преобразователя. Длина имени может составлять до 8 символов.

Ответ: !AA[CHK](cr)

где: АА – адрес преобразователя.

Команда чтения установленного протокола DCON/Modbus RTU

~AAP[CHK](cr)

где: ~ - символ идентификации команды

АА - адрес преобразователя

Р — символ идентификации команды

стр. 4

Универсальный адресуемый преобразователь интерфейсов 1Wire – RS-485

Ответ: !AAN[CHK](cr)

где: АА – адрес преобразователя

N – установленный протокол (0 — DCON,

1 — Modbus RTU).

Команда установки протокола DCON/Modbus RTU

~AAPN[CHK](cr)

где: ~ - символ идентификации команды

АА - адрес преобразователя

Р — символ идентификации команды

N – устанавливаемый протокол (0 — DCON, 1 — Modbus RTU).

T — Modbus RTO).

Ответ: !AA[CHK](cr)

где: АА – адрес преобразователя.

Команда инициализации шины 1-Wire ^AAS[CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

S — символ идентификации команды

Ответ: !AAV[CHK](cr)

где: АА – адрес преобразователя

V – признак присутствия на шине устройств с интерфейсом 1-Wire (0 — не обнаружено ни одного устройства, 1 — обнаружено хотя бы одно устройство).

Команда чтения данных с шины 1-Wire ^AADINN[CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

DI — символы идентификации команды

NN — количество байт считываемых с шины 1-Wire.

Ответ: !AA[Data][CHK](cr)

где: АА - адрес преобразователя

[Data] — информация, считанная с шины 1-Wire. Каждый байт кодируется двумя символами.

Команда записи данных на шину 1-Wire ^AADO[Data][CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

DO — символы идентификации команды

[Data] – информация, отправляемая на шину 1-Wire. Каждый байт кодируется двумя символами.

Ответ: !AA[CHK](cr)

где: АА – адрес преобразователя.

Команда поиска устройств на шине 1-Wire ^AAWCC[CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

W — символ идентификации команды

CC — код команды поиска (например, для датчика температуры DS18B20, код **F0** выполняет поиск всех датчиков на шине, а **EC** датчиков у которых установлен сигнальный флаг аварии)

Ответ: !AANN[CHK](cr)

где: АА – адрес преобразователя

NN — количество обнаруженных на шине устройств (шестнадцатеричное значение).

При большом количестве подключенных к шине устройств, поиск может продолжаться значительное время, это необходимо учитывать при настройке тайм-аута времени ожидания ответа. При подключении 48 устройств, время поиска может превышать 1 секунду.

Команда чтения адресов устройств, ранее обнаруженных на шине 1-Wire

^AARNN[CHK](cr)

где: ^ - символ идентификации команды

АА - адрес преобразователя

R — символ идентификации команды

NN — номер устройства (в порядке обнаружения) адрес которого необходимо получить.

Ответ: !AA[Data][CHK](cr)

где: АА – адрес преобразователя

[Data] – восьмибайтный адрес обнаруженного устройства.

НИЛ АП RealLab!

Описание протокола Modbus RTU

Список команд представлен в табл. 2. Для выполнения команд изменения адреса преобразователя или скорости обмена, необходимо предварительно отправить команду разрешения конфигурации.

Табл. 2 Список команд

Адрес реги- стра	Назначение команды	Код функции чтения	Код функции записи	Кол-во реги- стров	Диапазон данных
0000h	Разрешение конфигурации	01h	05h	01h	При чтении: 0000h-Запрещено 0001h-Разрешено При записи: 0000h-Запретить FF00h-Разрешить
00C8h	Имя преобразователя	03h	10h	04h	4 регистра по 2 байта (ASCII кодирование символов)
00D4h	Версия программы	03h	-	04h	4 регистра по 2 байта (ASCII кодирование символов)
0200h	Адрес преобразователя	03h	06h	01h	0001h-00F7h
0201h	Скорость связи	03h	06h	01h	0003h-000Ah
0205h	Протокол обмена	03h	06h	01h	0000h-DCON 0001h-Modbus RTU
020Ah	Контроль паритета и количество стоп- битов	03h	06h	01h	Старший байт – паритет (от 0 до 2); Младший байт стоп-биты (1 или 2);
0300h	Инициализация шины 1-Wire	01h	05h	01h	При чтении: 0000h-на шине 1-Wire не обнаружено ни одного устройства 0001h-на шине 1-Wire обнаружено хотя бы одно устройство При записи: 0000h или FF00h-Выполнить инициализацию шины
0300h	Чтение/запись группы байт	03h	10h	01h 20h	0000h-00FFh (под каждый байт дан- ных отводится целый регистр)

Табл. 2 Список команд

Адрес реги- стра	Назначение команды	Код функции чтения	Код функции записи	Кол-во реги- стров	Диапазон данных
0400h	Поиск устройств на шине 1-Wire*	03h	06h	01h	При чтении: Количество обнаруженных датчиков. При записи: код команды поиска (например, для датчика температуры DS18B20, код F0 выполняет поиск всех датчиков на шине, а EC датчиков, у которых установлен сигнальный флаг аварии)
0400h 0408h 0410h 04F8h	Чтение адресов об- наруженных устройств	04h	-	08h	0000h-00FFh (под каждый байт адреса отводится целый регистр)

^{*-}при большом количестве подключенных к шине устройств, поиск может продолжаться значительное время, это необходимо учитывать при настройке тайм-аута времени ожидания ответа. При подключении 48 устройств, поиск может занять около 5 секунд.

Коды ошибок протокола Modbus RTU для данного преобразователя приведены в табл. 3.

Табл. 3 Коды ошибок

Код	РМИ	Содержание
01	ILLEGAL FUNCTION	Недопустимый код функции.
02	ILLEGAL DATA ADDRESS	Недопустимый код подфункции (адрес регистра)
03	ILLEGAL DATA VALUE	Недопустимое значение регистра или количество регистров указано неверно.

Технические параметры

Табл. 4 Технические параметры

<u>Параметры выхода RS-485</u>				
Диапазон выходных напряжений	U вых	0±5	В	Относительно GND
Выходной ток	I вых	250	мА	не более
Параметры питания				
Напряжение питания	Vпит	1030	В	допускается понижение до 9 В
Потребляемый ток	Іпит	10	мА	не более (без нагрузки по RS-485 и 1-Wire)

_Предельные режимы

Температура -40...+70 °C Напряжение питания +30 В Ток нагрузки интерфейса RS-485250 мА

Примечание. 1. Предельные режимы не могут быть использованы для нормального функционирования прибора. Они показывают только границы, выход за которые может вывести прибор из строя или привести к резкому снижению надежности.

НИЛ АП ______ RealLab!

Универсальный адресуемый преобразователь интерфейсов 1Wire – RS485

Гарантия изготовител

НИЛ АП, ООО гарантирует бесплатную замену или ремонт неисправных приборов в течение 18 месяцев со дня продажи при условии сохранности пломбы и отсутствии видимых механических повреждений.

Претензии не принимаются при отсутствии в настоящем документе подписи и печати торгующей организации.

По истечении гарантийного срока НИЛ АП, ООО выполняет ремонт в соответствии с прейскурантом цен, действующих на момент оформления заказа на ремонт.

Доставка изделий для ремонта выполняется по почте или курьером. При пересылке почтой прибор должен быть помещен в упаковку изготовителя или эквивалентную ей по стойкости к механическим воздействиям, имеющим место во время пересылки. К прибору необходимо приложить описание дефекта и условия, при которых преобразователь вышел из строя.

Продукция изготовлена и реализуется при поддержке Фонда содействия инновациям в рамках программы "Коммерциализация VIII".

Техника бе	зопасности
	3 (СТ СЭВ 3743-82) относится к приборам, которые питаются безопасным) В) и не требует специальной защиты персонала от случайного соприкос- ı.
Дата изготовления:	202г.
Дата продажи:	202г.
Подпись	

М.П.